Welcome to the world of children's vision!

Archive for July, 2014

British study examines mobile phone effects on children

Photo JPL-blogueBritish scientists launched a major government-commissioned study on Tuesday into the effects of mobile phone usage on the developing brains of children.

About 2,500 children from London will be tested at the age of 11 and 12 and then again two years later, to assess how their cognitive abilities develop in relation to their changing use of phones and other wireless technologies.

blogue - fillette-iPhone

 Source : http://cypressinternalmedicine.com/wp-content/uploads/2011/11/photo-1.jpg

Professor Patrick Haggard, deputy director of the Institute of Cognitive Neuroscience at University College London, said it was the “largest follow-up study of its kind in adolescents worldwide”.

The World Health Organisation says there is no convincing evidence that mobile phones affect health, but existing data only goes back about 15 years.

In the study, the children will undertake classroom-based computerised tasks to measure cognitive abilities such as memory and attention.

“Cognition is essentially how we think, how we make decisions and how we process and recall information,” said Dr Mireille Toledano of Imperial College London, the principal investigator on the study.

Participants and their parents will also be asked questions about how they use mobile phones and other devices, and other aspects of their lifestyle.

An estimated 70 percent of all 11- to 12-year-olds in Britain now own a mobile phone, rising to 90 percent by the age of 14, according to the researchers.

The Study of Cognition, Adolescents and Mobile Phones (SCAMP) is being carried out by Imperial College London at the commission of the British Department of Health.

Letters were sent out to 160 different schools inviting them to enrol pupils, and tests will begin at the start of the new school year in September.

Imperial College is already involved in a separate international study, called Cosmos, into the possible long-term health effects of mobile phones on 290,000 adults in five European countries.

Advertisements

Video Displays and Dry Eye in Children

Photo JPL-blogueSource: http://www.practiceupdate.com/journalscan/9378

In a population of Korean children in grades 5 and 6 (ages 9–11), the authors compared symptoms and use of video display terminals in those with dry eye disease (9.7%, as determined by ophthalmic exam) with children without clinically determined dry eye. The risk factors for dry eyes in this population were related more to smartphone use (including mean duration of use, as reported by questionnaire) than to either computer or television viewing.

Blogue - Apple Addict

Photograph from Thomas PLESSIS (T.P Photographie)
                               With permission
                     http://www.thomas-plessis.com

 

The authors remind to keep the possibility of dry eye, which seems to be related to increased smartphone use, in mind in this population.

It is not uncommon for children between the ages of 9 and 11 — the population studied here — to exhibit potential signs of dry eye, which might include frequent blinking. Parents of children in this age range might also notice frequent or deep blinking behaviors that can be associated with tics or spasmodic blinking due to stress or anxiety.

The authors provide evidence that some of the signs and symptoms of ocular or visual discomfort can be associated with dry eyes. However, the jury is out on correlation or causation because the rate of dry eye signs was significantly greater in children with more smartphone use. The authors note that other visual factors have been reported as potentially associated with sustained smartphone use, such as accommodative issues and transient myopia. Because dry eye disease is not widely recognized as a potential problem in this age range, it adds to considerations in differential diagnosis of visual and ocular problems in childhood.

Two-hundred eighty-eight children were classified in either a dry eye disease group or control group according to the diagnostic criteria of dry eye disease. The results of ocular examinations, including best-corrected visual acuity, slit-lamp examination, and tear break-up time, were compared between groups. The results of questionnaires concerning video display terminal use and ocular symptoms were also compared.

Twenty-eight children were included in the dry eye disease group and 260 children were included in the control group. Gender and best-corrected visual acuity were not significantly different between the two groups. Smartphone use was more common in the dry eye disease group (71%) than the control group (50%) (P = .036). The daily duration of smartphone use and total daily duration of video display terminal use were associated with increased risk of dry eye disease (P = .027 and .001, respectively), but the daily duration of computer and television use did not increase the risk of dry eye disease (P = .677 and .052, respectively).

The results showed that smartphone use is an important dry eye disease risk factor in children. Close observation and caution regarding video display terminal use, especially smartphones, are needed for children.

Study source: JH Moon, MY  Lee, NJ Moon. Association Between Video Display Terminal Use and Dry Eye Disease in School Children. J Pediatr Ophthalmol Strabismus 2014 Mar 01;51(2)87-92.

Smartphones do affect vision in children

How to hold your phone so it doesn’t (completely) wreck your vision

Photo JPL-blogueSource:  http://www.marketwatch.com/story/dont-give-up-your-eyes-for-an-iphone-2013-08-23

Spending half the day staring into a 10 cm (four-inch) screen may also wreck one’s eyesight, new research suggests — and the devices may not be to blame so much as how we hold them.

David Allamby, an eye surgeon and the founder of Focus Clinics in London, recently coined the term “screen sightedness” and pointed out that according to his research, there has been a 35% increase in the number of people with advancing myopia since smartphones launched in 1997.

Allamby is concerned that use of portable devices could increase cases of myopia in children of another 50% in ten years!

Nearsightedness affects more than 30 % of the population of the U.S and more than 80% in Asia. The environmental factors that contribute include “close work,” or stress on the eye caused by reading or otherwise focusing on near visual tasks.

Using a smartphone strains the eyes in much the same way reading a book or staring at a computer monitor does, with one exception — the distance between the eye and the object. When a phone or other device is held close to one’s face, it forces the eye to work harder than usual to focus on text, says Mark Rosenfield, an optometrist. The discomfort can eventually result in fatigue.

enfant-iphone

Source: http://www.loupiote.com/photos/5391333755.shtml

People tend to hold smartphones considerably closer to their faces than they would a book or newspaper, even as close as seven or eight inches, Rosenfield says. And since smartphones have such a small screen, the importance of visual stress tends to be higher than for other devices.

Holding a smartphone farther away (but still using it the same amount) won’t necessarily prevent myopia entirely, Schaal said. But holding the phone at least 16 inches away from the face during use can be beneficial, Rosenfield says.

He also suggests taking breaks from using the phone. During those breaks, it is helpful to look into the distance, which relaxes the eye as it focuses on faraway detail instead of what is close.

Young children’s eyes may be spared early damage by limiting smartphone and tablet use, doctors say. Spending hours playing games or otherwise intently viewing a screen causes children’s eyes to exert effort for long periods. In the past, children focused on larger objects like blocks or toys, rather than such fine detail. They should be encouraged to engage in a variety of activities with different focusing targets of both near and far away objects.

Mayo Clinic Study: In-School Eye Movement Training Improves Early Reading Fluency

Photo JPL-blogueIn a new Mayo Clinic study, researchers examined the physical act of reading to see if practicing eye movements in school could lead to better early reading fluency.

Reading fluency is defined as the ability to read easily, quickly, without errors and with good intonation.

Saccades or rapid eye movements are required for the physical act of reading. Previous studies have shown that the ability to perform complex tasks such as saccadic eye movements are not fully developed at the age when children begin to learn to read. Eye movements in younger children are imprecise, resulting in the need for the eyes to go back to re-read text, leading to slower performance. When translated into the task of reading, it slows the reading rate and leads to poor reading fluency and may affect reading comprehension and academic performance.

“There are studies that show that 34 percent of third graders are not proficient in reading, and if you are not proficient in reading by third or fourth grade there is a four times higher likelihood that you will drop out of high school,” says Amaal Starling, M.D., Mayo Clinic neurologist and co-author of the study published in Clinical Pediatrics.

Dr. Starling says that the purpose of the new study was to determine the effect of six weeks of in-school training using the King-Devick remediation software on reading fluency. This software allows people to practice rapid number naming which requires eye movements in a left to right orientation. It teaches the physical act of reading.

In this study, standardized instructions were used, and participants in the treatment group were asked to read randomized numbers from left to right at variable speeds without making any errors. The treatment protocol consisted of 20-minute individual training sessions administered by laypersons, three days each week for six weeks, for a total of six hours of training.

Randomized numbers are presented at variable speeds from left to right; the participants read the numbers as quickly as possible.


Examples of pages taken from the King-Devick Test

(Images deleted following a call from the company)

 

Students in the treatment group had significantly higher reading fluency scores after treatment and post-treatment scores were significantly higher compared with the control group. At the one-year follow-up, reading fluency scores were significantly higher than post-treatment scores for students in first grade. Additionally, these one-year follow-up scores were higher than pretreatment scores across all grades, with an average improvement of 17 percentile rank points in the treatment group.

“The results of this pilot study suggest that the King-Devick remediation software may be effective in significantly improving reading fluency through rigorous practice of eye movements,” says Dr. Starling. “What our study also found was that there was an even greater improvement between first and third grade versus third and fourth graders, which means there may be a critical learning period that will determine reading proficiency.”

“The outcome of this study suggests that early childhood intervention with a simple methodology of eye movement training via the remediation software, which is inexpensive and can be implemented in developed or developing cultures easily, might allow a lasting improvement in ability to read, with clear sociologic ramifications,” says Craig H. Smith, M.D., neuro-ophthalmologist, Chief Medical Officer, Aegis Creative, and Senior Advisor, Bill and Melinda Gates Foundation, and a co-author of the study.

The authors hypothesize that this improvement in reading fluency is a result of rigorous practice of eye movements and shifting visuospatial attention, which are vital to the act of reading.

Commentary:

Training activities by computer undoubtedly bring improvements, at least in regard to eye movements, but vision therapy performed in real space would probably be much more effective.

In addition, the recognition by the medicine (or at least the group of physicians who participated in this study) the effectiveness of vision therapy is a big step for optometry.

Those who dispute the link between vision and academics must critically review and change these misguided beliefs. We cannot afford to let unfounded, dogmatic opinions, professional animosities and political agendas stop our children from achieving single, clear, comfortable and binocular vision while attaining their highest academic level possible.

Yes, there is a link between vision and learning. And yes, vision therapy improves academic performance.

Source: http://www.ncbi.nlm.nih.gov/pubmed/24790022